在SNCR反应中,温度是影响NOx脱除率的重要因素,SNCR具有一个较佳的反应温度窗口。氨水、尿素还原NOx的过程是还原剂还原与还原剂氧化两类反应相互竞争、共同作用的结果,温度过高时还原剂的氧化反应占主要,还原剂易被氧化成NO,会增加NOx的浓度;反应温度过低时还原反应不充分,反应速率慢,反应效率会降低,且会造成还原剂逃逸(NH3 slip),对下游设备产生不利的影响甚至产生新的污染。还原剂氨水和尿素在不同炉温下的脱硝效率见图7。
由图7可看出,相同条件下, 氨水将在相对稍低的较佳脱硝温度下达到比尿素溶液更高的较佳脱硝效率,尿素溶液的脱硝温度范围整体上要比氨水的脱硝温度范围稍偏向高温方向。通常认为使用尿素作为还原剂的SNCR较佳反应温度为960℃[3],而氨水的较佳反应温度较尿的稍低。由此可见,还原剂喷射位置的确定对SNCR系统十分关键。不恰当的喷射位置会造成残余氨的逃逸增加、还原剂用量增加且达不到所要求的脱硝效率。一般而言,还原剂喷射位置的确定需要通过流场模拟或通过安装温度传感器测试炉内温度分布来确定;流场模拟会模拟炉内温度、气体流动和烟气混合情况,温度传感器可实测出炉内不同高度、不同区域的温度分布情况,以此来确定合适的喷射位置。
氨氮摩尔比(Normalized Stoichiometric Ratio,简称NSR)是指喷入的还原剂所含的氨基量与初始NOx含量之间的摩尔比值。合适的NSR是保证脱硝效率的关键因素,由于实际的化学反应比较复杂,为保证脱硝效率,在实际反应中要注入多于理论量的还原剂。试验发现[4],当NSR<1.6时,脱硝效率随NSR增加提高明显,NSR增加0 . 2,脱硝效率提高约6 %;但当N S R 超过1 . 6,脱硝效率提高不到2%,增长趋势趋于缓慢,继续增加NSR对提高脱硝效率的贡献很小,这是由于一方面炉内NOx量有限,在一定的混合条件下,局部反应已趋于饱和,NSR继续增加对NOx的脱除效果逐渐减弱。另一方面,氨逃逸量是随着NSR的增加而增加。因此,应选用合适的NSR,以期在保证较高的NOx去除率的同时,降低氨的逃逸量。NSR对NOx 脱硝效率的影响见图8。